Effects of length on the catchlike property of human quadriceps femoris muscle.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Recent reports have suggested that electrical stimulation trains that take advantage of the catchlike property of skeletal muscle can produce higher forces from skeletal muscle than traditionally used constant-frequency trains. This study investigated the effects of catchlike-inducing trains on human quadriceps femoris muscles while the kneejoint was held at 15 degrees of flexion. SUBJECTS AND METHODS Subjects (N=12) were tested with constant-frequency trains that had interpulse intervals ranging from 10 to 160 milliseconds and comparable catchlike-inducing trains. Data were collected during the control condition (1 train every 10 seconds) and during repetitive contractions (1 train per second). RESULTS During control and repetitive activation conditions, catchlike-inducing trains produced approximately 5% to 110% greater peak forces than comparable constant-frequency trains, depending on the frequencies being compared. Total forces produced (ie, force-time integrals) were increased up to 59% and 49% during the control and repetitive activation conditions, respectively. CONCLUSION AND DISCUSSION These results support earlier findings that catchlike-inducing trains may be advantageous in functional electrical stimulation applications.
منابع مشابه
Catchlike property of human muscle during isovelocity movements.
This study examined the catchlike property of skeletal muscle during eccentric and concentric isovelocity contractions of fresh and fatigued quadriceps femoris muscles of 10 healthy subjects. During concentric contractions of fresh muscles, stimulation trains that elicited a catchlike response (CITs) produced greater force outputs and rates of rise force than comparable constant-frequency train...
متن کاملActivation of human quadriceps femoris muscle during dynamic contractions: effects of load on fatigue.
Muscle fatigue is both multifactorial and task dependent. Electrical stimulation may assist individuals with paralysis to perform functional activities [functional electrical stimulation (FES), e.g., standing or walking], but muscle fatigue is a limiting factor. One method of optimizing force is to use stimulation patterns that exploit the catchlike property of skeletal muscle [catchlike-induci...
متن کاملNew look at force-frequency relationship of human skeletal muscle: effects of fatigue.
A muscle does not have a unique force-frequency relationship; rather, it is dynamic and depends on the activation history of muscle. The purpose of this study was to investigate the force-frequency relationship of nonfatigued and fatigued skeletal muscle with the use of both catchlike-inducing trains (CITs) that exploited the catchlike property of skeletal muscle and constant-frequency trains (...
متن کاملEffects of activation pattern on human skeletal muscle fatigue.
Variable-frequency stimulation trains (VFTs) that take advantage of the catchlike property of skeletal muscle have been shown to augment the force production of fatigued muscles compared with constant-frequency trains (CFTs). The present study is the first to report the force augmentation produced by VFTs after fatiguing the muscle with VFTs versus fatiguing the muscle with CFTs. Data were obta...
متن کاملThe Effect of High-Intensity Interval Training and Continuous Training on the Desnutrin Gene Expression in the Subcutaneous Adipose Tissue and the Quadriceps Femoris Muscle Tissue of Obese Male Rats
Background. Desnutrin is an enzyme that catalyzes the first step of cytoplasmic triacylglycerol lipolysis from white adipose tissue and several other tissues, which are disrupted by the obesity and metabolic syndrome. Objectives. The aim of this study was to compare the effect of high-intensity interval training and continuous training on the desnutrin gene expression in the subcutaneous adipo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical therapy
دوره 79 8 شماره
صفحات -
تاریخ انتشار 1999